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Preface

tMANUAL is a guide to using tMAVEN.

For more information visit:

o [Website] https://gonzalezbiophysicslab.github.io/tmaven/
 [Github] https://github.com/GonzalezBiophysicsLab/tmaven


https://gonzalezbiophysicslab.github.io/tmaven/
https://github.com/GonzalezBiophysicsLab/tmaven

1 1. Installing

tMAVEN is a free open-source software available to anyone looking to comparatively analyze
single molecule time-series data. The easiest way to Install tMAVEN is to navigate to https:
//github.com/GonzalezBiophysicsLab/tmaven, go to releases and install the latest .dmg for
Mac or .msi for Windows.

Otherwise, users can also do a manual installation (not recommended) also oulined at https:
//gonzalezbiophysicslab.github.io/tmaven/install. html. There are a few softwares necessary
for installation:

e Python, which is available for download at many sites, we recommend miniconda which
may be installed at https://docs.conda.io/en/latest /miniconda.html

If this software is already set up, a user must do the following in sequence:

o mnavigate to the tMAVEN repository at https://github.com/GonzalezBiophysicsLab/t
maven, and clone the repository.

e open terminal navigate to the tMAVEN folder and enter the command pip install -e
. and select yes/enter to any subsequent requests.


https://github.com/GonzalezBiophysicsLab/tmaven
https://github.com/GonzalezBiophysicsLab/tmaven
https://gonzalezbiophysicslab.github.io/tmaven/install.html
https://gonzalezbiophysicslab.github.io/tmaven/install.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/GonzalezBiophysicsLab/tmaven
https://github.com/GonzalezBiophysicsLab/tmaven

2 2. Navigating

tMAVEN can support ASCII, SMD [Greenfeld et al. (2015) ; HDF5 based|, raw HDF5, and
SPARTAN files. Load data by hitting File/Load, select file type, and then the file itself. Note
that class, pre/post etc. files may be uploaded separately. The default upload settings are
for SMD files, so if using ASCII files, the upload setting must be chosen through the menus
File/Load/Text files (ASCII/UTF)/Raw/[user’s format]. In this section, N refers to number
of traces, T to number of time points and C to number of colors. Collation axis (0 or 1) refers
to how the text separates individual traces

Tools Modeling Plots Scripts View
! SMD %0
Export 4 HDF5 Dataset >
Clear Data Text files (ASCII/UTF) 4 Raw
Exit %Q Numpy arrays » All tMAVEN Presets
; SPARTAN traces Classes Zicolenjcolateeiy
correction.blee... 0.05 IS N,CT » 2 color; collated 1
correction.filter... 2.0 TN,C » 3 color; collated 0
10000
correction.gam... 1.0 T,CN » 3 color; collated 1
_. 8000 CT,N » 4 color; collated 0
io.axis_order [1,2,0] 5
o 6000 CN,T » 4 color; collated 1

Note that any preferences using True/False are case sensitive. There is also an **HDF5 viewer™*
tool under “View’’ that the user may find useful.



3 The Molecule Table

Navigate to the molecule table View/Molecule Table or hit command T to bring up the
molecule table. Notice the columns:

e Class: the class of the trace, change a trace’s class by clicking its row in the molecule
table and inputing a number, or simply by clicking around the plot and keying a number.

e On/Off: Whether the trace is turned on. By toggling a trace one can easily choose which
traces are included in modeling and plotting features, see section 4. It will also toggle
whether the trace is subject to actions like save.

o Pre/Post: The range of time each cut trace covers

e Source: If modeling from different datasets, the origin of each trace can be seen here.
Note that the class can be assigned separately from the source.

Class On/Off Pre Post Source =
l 0 @ 0 600 dataset
1 ¥ 70 203 dataset
N 3 [V 0 496 dataset
2 ¥ 262 370 dataset
B 5 [ 0 522 dataset
¥ 1|V 151 440 dataset

Figure 3.1: Molecule Table Sample

Classifying traces is one of the most powerful aspects of tMAVEN.



4 Using the Ul and Cutting a Trace

Navigate between traces by scrolling while graph window is selected or by using the scroll
underneath the graphs (see Figure). Notice trace number and class of the graph displayed in
the bottom right corner. Aspects of the graph can be adjusted in the graph settings and figure
options (see Figure), or in preferences. Most of these settings are plot.[aspect] and include
settings for the axes, subdivision ticks, time scale, and more. The user can always use the
View/reset GUI command to set all these settings to default.

File View Tools Modeling Plots Other [\l

Molecule Table [
Class ONOIf Pre Post Source =

g o ¥ 0 600 dataset
1 & 70 203 dataset
n 10000

1 v 38 496 dataset
3 1 v 2. 370 dataset 8000
4

1 v 0 600 dataset —_
5 S | 6000

1 v 151 440 dataset o Green Donor
g1 ¥ 1.. 300 dataset = i
7 2 | 4000 i Fret Intensities

1 v 0 247 dataset k] | *,\|‘

c |
3 q v 1.. 523 dataset = 2000 /) ““‘\‘, ‘\{I nl\.,\‘\uwl
8 1 ¢ 0 480 dataset 'J ‘ JI
A et
8 1 ¥ 0 152 dataset 0 Red ccep\ o d
M1 v 2. 379 dataset 1257
1 @ 0 154 dataset 1.00 4 ‘
& 1 ¥ 0 208 dataset
LU 0 550 dataset 0.75 1 ‘ \l I ‘ “ |“ " |
4 u | fl 1/l
By 0 95 dataset g 0.507“ l ‘H r' \ M r \‘ ml ‘ ’ | ”l Efret value
J
1 @ 0 151 dataset w “J‘hM W M‘f\ /V. w q\ VM'J‘ \‘ ”MI, l"\(i 1}' r ! " y\\ l” J‘
|

7 1 v 0 116 dataset 0.25 1 } J J ‘ UL
9 vy 0 600 dataset 0.00 - JvJ.\‘
H 1 v 0 218 dataset |
20 9 vy 0 00 dataset 025 T T .
. 0 200 400 600

1 v 0 550 dataset o

Time (s) Probability

2 1 ¥ 44 206 dataset T - Trace Class
®1 v 0 193 dataset a@ ¢ > @E o Save Trace as PDF Trace Number
2 9 v 24 138 dataset Scroll through traces
% 4 g 0 81 dataset |v| I ] 46590 1

Figure 4.1: labeled UI after loading a dataset

Most actions in tMAVEN do not alter the raw data of a trace, such as gamma and bleed-
through corrections. Only cutting traces actually alters the pre and post times which can be
seen in the molecule table or on the traces themselves. The user can set the post time by right
clicking at the desired point on a graph or left clicking for the pre time. Notice that once a
section has been cut out, it appears much fainter on the graph. Reset the pre and post times
for a single trace by hitting R. Users can also use the square brackets to increase and decrease
the post time by 1 point.



Other tools include the pan and zoom features (see Figure). Use the zoom tool to select a
section of the graph to enlarge and to allow more precise selection of pre/post time. Addi-
tionally, hit G to toggle viewing subdivisions on the graph (settings for these can be altered
in preferences as described earlier). Another useful tool is single photobleach detection,
which finds and cuts out photobleaching for only the trace shown. Hit P to apply this tool to
the shown trace. Photobleach for all traces is also available and is discussed in section 3.5.

But before any manual trace picking is done, it is highly recommended that the user employ
the preprocessing tools described in section 3.



5 3. Preprocessing

The tMAVEN tools allow users to skip a lot of the painful preprocessing by culling bad traces,
reordering traces by viability, and adjusting the presentation of those traces without altering
the raw data, all of which makes data sets easier to process. These features can be found under
“tools”, and all should be considered before trace picking to optimize the process.

Before going through traces users should navigate to tools/ selection/order by /cross-
correlation to order traces by cross-correlation since good FRET data corresponds to cross
correlated jumps of the donor and acceptor emissions. Notice also the options to order by
and Turn on/off by class. One of the greatest strengths of tMAVEN is the ease of classifying
and viewing traces with the molecule table (refer to section 1.2). The power to classify traces
greatly enhances use of the algorithms discussed in section 4 by the ease with which one may
experiment with inclusion of groups of traces. In this case the user is not forced to go through
the whole data set repeatedly.



6 Filter Traces

The Filter Traces command, found under tools, allows the user to filter traces by signal
to background ratio (SBR). An algorithm that identifies photobleaching (see 3.6) is used to
determine the parameters of background. Filter Traces then sorts traces by SBR and allows
the user to classify or cull those groups.

Classifications

] Dead
] [ Low SBR, Bleach
5 [ High SBR, Bleach
10° 4 1 Low SBR, No bleach
] High SBR, No bleach
Al
Parameters for
defining SBR o 1044
c 3
Parameters e) ]
Q.
© ]
Low SBR 2.0 =
8 103 4
High SBR 5.0 - ]
(o]
Min.frames (dead) 10 QL) 1
o 2 |
Skip frames (start) 0 [= 10
5 ]
Source Data Donor+Acceptor ~ selectwhich ==
channels to analyze
101 4
Defaults Calculate
10° 3
1] I

—-10000 0 10000 20000 30000 40000
Intensity

[1,254,4643,87,549]
Figure 6.1: A graph like this is generated once calculate is hit. The actual culling/classifying
is not completed until the user hits process (see figure 3). The graph enables the

user a comprehensive view of their data set

Culling in Filter Traces:
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Dead Remove Traces ~

Low SBR,Bleach Remove Traces ~

High SBR,Bleach Classify 2 v

Low SBR,No bleach Classify 0 v

High SBR,No bleach  Nothing v
Process

Once calculate is hit and the graph is made, the user can choose what to do with each type of
trace (figure 3): ones with low SBR and bleaching, ones with high SBR and bleaching, ones
with low SBR and no bleaching, ones with high SBR and no bleaching, and dead traces (traces
that bleach before the “minimum frames dead”). Users can repeat the process of filtering and
culling until satisfied.
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7 Cull

The Cull function under tools is relatively intuitive and allows users to discard traces according
to class or a maximum/minimum data point value. The latter functions should be used only
after photobleach detection (see section 3.6) lest good traces be culled. The data searched for
this function includes only Emissions and not Epp g values.

12



8 Corrections

In this group there are many useful tools such as bleedthrough, gamma, and background
correction. As discussed earlier, the actual data is not altered. The program stores a copy
of the given data, and the copy is altered by corrections and displayed. For this reason, the
corrections should be applied just once for each time a data set is loaded into tMAVEN.

o [Bleedthrough corrections] The default bleedthrough correction is set to 5% and can be
adjusted in preferences under correction.bleedthrough.
o [Gamma Corrections] The default gamma correction is set to 1 and can be adjusted in

preferences under correction.gamma.
o [Background] Background is determined for each trace by the last x frames, alterable in
preferences under correction.backgroundframes, and subtracted from the red emission

value.

\end{description}
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9 Signal Filters

Also found under tools/corrections are various signal filters that can make traces much easier
to read. All smooth the graphs according to different methods, making the Epppr states
easier to discern. The filters are found under Tools/Corrections/Signal Filters, and can be
removed by resetting corrections under corrections/reset. Reset corrections before switching
between signal filters. The width of the filter window’s can also be adjusted in preferences
by correction.filterwidth which is automatically set to 2. See figure 4 for a look at these
filters.

¢ Gaussian

o Wiener

e Median

e 8-pole Bessel

o Chung-Kennedy (Chung and Kennedy 1991)

14



10000 10000 -
. 800D ‘ . 8000
| =2
& 6000 4 "F‘w"'f. WA = 6000
L b=
g 40004 L | ] |Ihv’\°| rjh’]wl o £ 4000 1
I P 8 .
£ 2000 ] »,1}\}."*'5'-', TP JMIMJ:‘-‘; £ 20007
04 nﬂn'-\-w\.h-!-w 04 ot
1.25 - 1.25 4
1.00 1 1.00
0754 0.75 1 ‘
| L .
E 0.50-“ rﬂ"‘l“ e "l* b W 5 0501 ‘ \
“ooasd M ORI 0.25 4 |
0,00 1 g | 0.00 4
025 - - )
0.26 ; . ,
0 600 i
Time (8) robabitty Time (s) Probability
Raw Trace (No data filter) Gaussian Filter
10000 1
- 8000 1 |
2 1
& 6000 1 !
o ! TN
£ 20004 "
0- - Aol
1.25 | 1.25 + J
100 1 . 1.00 1 ‘ '
0759 ‘ | ot |
€ 050 " N b il g oso " AT A b |
02549 ' ) 0254 ! il T Uaa L BN ‘l d
000 1 “ . 0.00 { ity ]
025 . v \
5 0 025 : . . e
Time (s) Probability Time (s) Probability
Wiener Filter Median Filter
10000 10000
. 8000 4 _ 8000 4
6000 1 3 6000 .
Faoood , £ 4000 .
TR ".- dh bl H 3 I-v'f A W
€ 2000450 A PR £ 20003 S [l N i i U
0+ - 04 - SR
1,25 1 1.25 1
1.00 | ‘ 1.00 - ’
0754 | 0751 M
£ 0504 ‘ | £ 0504 " : ! | |
0254 0254 ~ If |
0.00 1 T || , 0.00 4 | ’
025 . r ) 0.25 T v 1
0 600 0 600
Time (s) Probability Time (s) Probability
8-Pole Bessel Filter Chung-Kennedy Filter

Figure 9.1:

The visual effect of the signal filters offered by tMAVEN on the same trace (top
left). The benefits of different filters and level of smoothing can be seen here.
The Chung-Kennedy filter best maf'gtains the sharp transitions while also reducing
noise well. In comparison the Gaussian filter is much more rounded, which makes
determining transition times harder.



10 Photobleaching

By navigating to tools/photobleach/photobleach detection, the user can run an algorithm
that checks each trace for photobleaching and cuts the trace there. Alternatively, users can hit
P and cut only the trace they are looking at as was discussed in 2.3. The algorithm essentially
identifies transitions by maximizing the evidence of a Gaussian between sections of data and
placing transitions between those. Photobleaches are then transitions to mean 0 states.

16



11 4. Modelling

Possibly the most important feature of tMAVEN is its ability to generate models using various
algorithms. Users can also use a variety of plots to assess the performance of those models.
For more information on Bayesian inference and use of Hidden Markov Models (HMMs) to
model single-molecule data (see Kinz-Thompson, Ray, and Gonzalez 2021). A majority of
tMAVEN’s algorithms use HMMs which model a time series as transitioning between discrete
states hidden by noise.

1.00 -
0.75
0.50 ~
0.25 -
0.00 -
-0.25

EFRET

0 200 400 600 800
Time (s)

Figure 11.1: After generating a model (see below) tMAVEN shows the idealized trajectory
(black line) also called the Viterbi path in black, indicating the most likely state
of a molecule at each time point

In running any of these algorithms, it may be useful to also check the log, by navigating to
View/Show Log. The parameters of a model can be found here, for example: number of
determined states, transition matrix, or state means. When generating a model, tMAVEN
will only use “on” traces. Viewing the molecule table (1.2) and using the selection tool (2.1)
makes toggling molecules on and off much easier.

Additionally, which model is displayed through idealized trajectories may be selected under
Modeling/Change Active. An individual model can be removed with Modeling/Clear Ac-
tive or all can be removed with Modeling/Remove Models. Models can be exported or

17



imported as hdf5s with Modeling/Export Active and Modeling/Load Active. If users wish
to update the idealized trajectories shown, either after changing pre/post times or includ-
ing/excluding certain traces, they should click Modeling/Update idealized. Note that this
will not update the existing model parameters.

#Generating Models There are many models to choose from under Modeling/ FRET Mod-
eling. One important aspect of these models is whether or not Model Selection is utilized.
Without model selection, the user must know and input the number of states, however, if that
number is unknown, some algorithms may determine it themselves (see Figure). These papers
elaborate on that selection: For vbFRET (Bronson et al. 2009) and ebFRET (Meent, Bronson,
and Gonzalez 2014)

When running any model, users also have to input some computational settings (see Figure). It
is recommended to just leave the defaults. The number of restarts corresponds to the number
of times the algorithm will restart with different initializations, in order to ensure this state
does not affect the final result. The setting for the convergence determines at what relative
change in cost function the algorithm will determine convergence has occurred. In case the
convergence doesn’t occur, the algorithm will cut off after the max iterations.

18



@ Run Modeling

Model Type
ebHMM mode| parameters

Number of states: (low)| 1 < (high) | 6 -
Prior beta: 0.25 Options for a
) range only

Prior a: Parameters 2.5 appear when

for algorithm model selction is
Prior b: 0.01 applied
Prior pi: 1.0
Prior alpha: 1.0

ebHMM algorithm parameters Computation Settings

CPUs: 8 =
Restarts: 4 =
Max iterations: 1000 =
Convergence: 1e-10

Run

Figure 11.2: After selecting a model, tMAVEN prompts users to determine some parameters
for the modelling algorithms that inform the prior. In most cases these settings
need not be changed aside from number of states. The parameters asked for might
change depending on the model type. The algorithms in tMAVEN use a Gaussian
gamma function with: a as the shape parameter, b as the rate parameter of the
gamma distribution parameters, beta as the Gaussian precision parameter, and
alpha as the sole parameter of the Dirichlet distribution (Bishop 2006).

19



12 Generating a Threshold Model

Under Modeling/FRET Modeling/Threshold is the simplest Model. the threshold model
assigns every data point to one of two states dependent on whether it is greater than or less
than a user-specified threshold. Threshold models calculate average emission values, means,
variances, and fractions of the two states visible in the log.

20



13 Generating a Mixture model

Under Modeling/FRET /Mixtures are various models that simply cluster the data from all
traces either by K-means or by a Gaussian mixture model (GMM) with either a maximum
likelihood (mIGMM) or a variational Bayesian (vbGMM) technique (Bishop 2006). If the
number of states is unknown, users can also choose to use model selection (see section 4.2)
with variational Bayesian (vbGMM + Model Selection). Mixture models calculate average
emission values, means, variances, and fractions of k states visible in the log.

21



14 Generating a Composite HMM Model

Composite models under Modeling/FRET Modeling/Composite HMMs create a hidden
Markov model (HMM) for each trace and then cluster them in various ways. This single
clustered model is then used for the idealized paths shown on each trace.

To generate the HMMs, users can choose either a maximum likelihood algorithm (mIHMM,
McKinney, Joo, and Ha 2006) or variational Bayesian algorithm (vbHMM, Bronson et al.
2009). If the number of states is unknown, users can also choose to use model selection (see
Section 4.2).

Once HMMs have been generated, they are clustered in various ways: K-means, vbGMM and
Threshold which have been elaborated on in sections 4.3 and 4.4. The means, variances and
fractions of the states from the clustered model can be found in the log.

22



15 Generating Global HMMs

vbConsensus (variational Bayesian, TMAVENPAPER?) and ebHMM (empirical
Bayesian, Meent, Bronson, and Gonzalez 2014) are both consensus methods, in that they
generate one HMM from the entire data set. In addition to means, variances, and fractions,
the consensus methods yield a transition matrix, which may be found in the log or under
Analyze Dwell Times as discussed in section 4.7.
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16 Dwell Time Plots and Analysis

Once a model is run and the number states and their means and transition matrices are
calculated, tMAVEN can analyze a data set in terms of dwell times. Before analyzing, go to
modeling/ Analyze Dwell Times, select your model with Change Active and hit calculate
(see Figure). To look at a graph for the dwell of a specific state, choose the desired state under
rate analysis and input whether it is expected to be a single, double, or triple exponential and
hit run. Under results, the “Rate type” will read “Dwell Analysis”, and rates and coefficients
will be shown according to the form of the equation selected. For instance a double exponential
will show two rates and two coefficients according to the equation y = A;e "1t + Aje "2t

[ ] Run Dwell Analysis
State model Results
Model Type = vb Consensus HMM State = 0
Transition Matrix = | [[27768.46734979 1205.8819775 ] Rate type = Transition Matrix
— 1 [1234.85490206 47544.79577065]] Rates =

[0.  0.04250982]

Change Active
Dwell times
Dwells calculated
Calculate Plot
Rate Analysis
Active State = 0 ~
Rate function = Single Exponential v
T-matrix Run

Enforce Normalisation

Figure 16.1: Before hitting calculate, make sure the intended model is used by looking at
“Model Type” in the top left.

Then, either navigate to plots/Dwell Times or simply hit Plot in the Dwell Times section
of Run Dwell Analysis (see Figure). Now that the plot is made (see Figure), a histogram of

24



Refresh Reset Preferences

Filter
‘ Name - Value - 1.00 4
axes_linewidth 1.0 l}( A= [1.095]
k =[0.069]
axes_topright True 3\0_75 11
color_ceiling 0.8 E “
)
color_cmap jet '8050 7] \
color _dbl True o \
0.25
color _dblfloor 0.2
color _dblfloo... white 0.00 4
1 1 1 1 1
calor_flaarss | 0,06 0.0 333 66.7 100.0 133.3 166.7
color_floorc... #FFFFCC Dwells (s)
color _nticks 5 -— .
AE>» Q=¥

Aviall faran Calan b

Figure 16.2: A dwell time plot with the data in blue and theoretical dwell graph, from model
selected as in figure 7, as a dotted black line. To change the log scale to linear,
search on the left for hist_log y. To toggle the model, search for model on. To
change which state of the model is displayed, search for dwell state and set to
the desired.
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the dwell time is displayed, an exponential decay function. The presets show the y axis on a
log scale and the model, theoretical dwell, off. Alter these in the preferences on the left (see
Figure).

If any series do not appear, or do not update when dwell_state is changed, navigate back to
modeling/analyze dwell times and hit calculate again, turn off and on the active model, or hit
refresh in the top left corner of the dwell time plot (see Figure).
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17 5. Plotting

The histogram feature of tMAVEN is primarily useful for visualization of data and not diag-
nostics. Navigate to Plots/FRET hist 1D to generate a one-dimensional histogram of all
Ef,¢ emission data, the peaks represent states and should look like K gaussians.

-
o0e0

Refresh Reset Preferences

Filter

Name “ Value -

axes_linewidth 1.0
axes_topright False

color_ceiling 0.8

Probability

color_cmap jet
color_dbl True

color _dblfloor 0.2

color_dblfloo... white

color _floor 0.05 -0.250.00 0.25 0.50 0.75 1.00 1.2

color _floorc... #FFFFCC EFRET

A > «I» Q zZ= ~ [E) x=0984y=0.270

color _nticks 5

fin hainht 2R b

b

Figure 17.1: A typical one dimensional histogram. Note the number of traces used N in the
top right. If a model has been calculated, a population-weighted set of emission
distributions is plotted as the solid black with the dotted lines as the individual
populations. These lines are not a Gaussian fit of the data, but come directly
from the models. Theoretically, better models/processing will result in a better
fit of the histogram.

Notable preferences the user might want to change include:

e hist_force_y to force the y axis value
e hist_log_y puts the y-axis in log scale
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e model_on will toggle the model as described in Figure
e hist_false toggles the histogram itself, blue in the figure
e hist_color will change the color of the histogram

The save icon below the graph can be used to export the figure.
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18 Two-Dimensional Histograms

The two-dimensional histograms in tMAVEN also have the axis of time. Generate by navigat-
ing Plots/FRET hist 2D The histogram is automatically smoothed by a median filter which
setting can be changed (see below). One of the most useful capabilities is the choice of using
post-synchronization. In this case, t=0 represents the time of transition from one specified
state to another, see below. Note that post-synch can only operate once a model is run and

transitions have been detected.

@

Refresh Reset Preferences

Filter

Name 4 Value -~

axes_linewidth 1.0
axes_topright False
color_ceiling 0.8
color _cmap jet

color _dbl True
color_dblfloor 0.2

color _dblfloo... white
color_floor 0.05
color_floorc... #FFFFCC

color _nticks 5

AT AT I e S Ry b
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AE> Q=¥ A

1.2 5
1.0 1
0.8 1
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0.60
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0.20
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Figure 18.1: A two dimensional histogram with post-sync on using the het color map.

Useful preferences:

e color_ceiling sets the ceiling for the color mapping

29



e color_dbl enables two floors

e color_floor_color is the lower floor

e color_cmap determines the color map, all matplotlib maps are supported

e hist_smooth_med toggles the use of a median filter on the graph and hist_smoothx/y
determine the widths of this filter

e time_dt changes the time ticks, set to acquisition time to yield the same axis as traces
while time_nbins changes the length of time shown.

e hist_normalizeframe will normalize the histogram to mitigate photobleaching or addi-
tional transition at different times, see Figure

For post synchronization, tMAVEN will use the existing model which has identified transitions
so users can essentially monitor all traces after a specific transition in a data set. Notice that
N, number of traces used, will likely change since not all traces have all transitions. Small n
represents the number of transitions measured not number of traces.

e sync_postsync toggles post synchronization

e sync_singledwell set to true shows only the dwell before and after transition. In other
words, a false setting will also show future transitions.

o sync_hmmstate_1 shows the pretransition state while sync_hmmstate_2 shows the post
transition state, input “-1” for any other state
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Figure 18.2: The same graph as figure 10 with normalization on.
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